芯片中心

激光芯片 用激光制造芯片,最新进展

小编 2024-10-06 芯片中心 23 0

用激光制造芯片,最新进展

现代计算机芯片可以构建纳米级结构。到目前为止,只能在硅晶片顶部形成这种微小结构,但现在一种新技术可以在表面下的一层中创建纳米级结构。该方法的发明者表示,它在光子学和电子学领域都有着广阔的应用前景,有朝一日,人们可以在整个硅片上制造3D 结构。该技术依赖于硅对某些波长的光透明这一事实。这意味着合适的激光可以穿过晶圆表面并与下面的硅相互作用。但设计一种既可以穿过表面又不会造成损坏、还能在下面进行精确纳米级制造的激光并不简单。土耳其安卡拉比尔肯特大学的研究人员通过使用空间光调制来创建针状激光束,从而更好地控制光束能量的分布位置,从而实现了这一目标。通过利用激光和硅之间的物理相互作用,他们能够制造具有不同光学特性的线和平面,这些线和平面可以组合起来在表面下创建纳米光子元件。使用激光在硅片内部进行制造并非新鲜事。但领导这项研究的比尔肯特大学物理学助理教授Onur Tokel解释说,到目前为止,只能制造出微米级结构。他说,将这种方法扩展到纳米级可以释放新的能力,因为它可以制造出与入射光波长大小相当的特征。当这种情况发生时,这些结构会表现出一系列新颖的光学行为,除其他外,这使得制造超材料和超表面成为可能。“硅是电子、光子学和光伏技术的基石, Tokel说。“如果我们能在纳米级晶圆内部引入额外的功能,以补充这些现有的功能,这将带来一个完全不同的范例。现在你可以想象在体积内做事,甚至可能最终在三维空间中做事。我们相信这将开辟令人兴奋的新方向。”以前的技术无法在纳米尺度上制造,因为激光一旦进入硅内部就会散射,很难精确地沉积能量。在《自然通讯》杂志发表的一篇论文中,托克尔的团队展示了他们可以通过使用一种称为贝塞尔光束的特殊激光来解决这个问题,这种激光不会发生衍射。这意味着激光可以对抗光散射效应,在硅内部保持狭窄的聚焦,从而可以精确地沉积能量。当激光照射到晶圆上时,会在光束聚焦的区域产生微小的孔洞,即空隙。Tokel说,以前的方法也出现过这种情况,但聚焦更紧密的光束产生的较小空隙会表现出“场增强”效应,导致激光强度在它们周围增加。这会改变空隙周围的硅结构,从而进一步增强增强效应,形成一个自持反馈回路。该团队还发现,他们可以通过改变激光的偏振来改变场增强的方向。最终结果是在硅片中创建出最小 100 纳米的二维平面或线状结构。这些结构的折射率与晶圆的其余部分不同,但 Tokel 表示,目前还不完全清楚这些结构的组成。根据之前的研究,他认为硅片的底层晶体结构可能已被修改。他补充说,电子显微镜研究应该能够在未来澄清这一点,但最终没有必要了解这些结构的确切底层性质来创建有用的纳米光子元件。为了证明这一点,研究人员制造了一种纳米级光子器件,称为布拉格光栅,可用作光学滤波器。据该团队称,这是第一个完全埋在硅中的功能性纳米级光学元件。德国耶拿大学研究员Maxime Chambonneau表示,研究人员能够实现纳米级特征非常了不起,因为 Tokel 团队使用的相对较长的激光脉冲通常会产生较大的热影响区,从而导致微尺度变化。(Bilkent 团队采用以纳秒为单位的脉冲,而其他直接激光写入工作传统上涉及皮秒或飞秒激光。)Chambonneau 表示,能够创建小于光波的特征可能会带来各种可能性,包括提高太阳能电池的能量收集能力。由于该制造技术不会对晶圆表面造成任何改变, Tokel表示,未来该技术可用于制造多功能设备,电子元件位于表面,光子元件埋在下面。该团队还在研究该方法是否可用于在芯片表面下雕刻微流体通道。托克尔表示,通过这些通道泵送流体可以改善散热,从而有助于冷却电子设备并使其运行得更快。 Tokel表示,这种方法的最大限制在于研究人员无法精确控制空洞在特定区域出现的位置。目前,一小部分空洞在激光束聚焦的区域中分布不均匀。托克尔表示,如果他们能够更精确地定位这些空洞,他们就能在三维空间中进行纳米加工,而不仅仅是简单地生产出线条或平面。“如果你能单独控制这些东西,并将它们像链条一样分发,那么未来这将非常令人兴奋,”他补充道。“因为这样你将拥有更多的控制权,这将使更丰富的元素或系统成为可能。”

参考链接

https://spectrum.ieee.org/photonics-beneath-silicon-surface 来 源 | 半导体行业观察(ID:icbank)编译自IEEE ☞商务合作:☏ 请致电 010-82306118 / ✐ 或致件 Tiger@chinaaet.com

只是组装?遥遥领先的国产激光雷达,绕不开索尼的传感器芯片

我们知道,许多旗舰手机,在宣传拍摄能力的强悍时,厂商往往都在强调——使用了索尼的IMX???图像传感器。

为什么?

这是因为,索尼是全球CMOS图像传感器遥遥领先的王者——无论是技术实力亦或是市场份额,CMOS图像传感器是摄像头的最核心器件。

传感器专家网

https://www.sensorexpert.com.cn

专注于传感器技术领域,致力于对全球前沿市场动态、技术趋势与产品选型进行专业垂直的服务,是国内领先的传感器产品查询与媒体信息服务平台。基于传感器产品与技术,对广大电子制造从业者与传感器制造者提供精准的匹配与对接

据Yole最新的《2024年CMOS图像传感器行业现状》显示,索尼CMOS图像传感器(CIS)的市场份额在2023年进一步攀升至45%——几乎快要占据全球CIS一半的市场,足见这位全球CMOS图像传感器王者地位的稳固。

▲来源:yole

然而,索尼的传感器芯片,不仅统治了摄像头,还将垄断另一个国产似乎看起来遥遥领先的传感器赛道——激光雷达。

Yole《2024车载激光雷达市场报告》显示,禾赛科技、速腾聚创、图达通、华为、览沃等国产激光雷达厂商,合计占据全球84%的市场份额。

激光雷达不是禾赛科技、速腾聚创等厂商生产的吗?

是,但不全是。

激光雷达是一个复杂、精密的传感器系统,主要有激光发射、激光探测、信息处理、扫描等四大部件构成, 禾赛科技、速腾聚创等厂商属于中游集成商,其产品既有自研的部分,也有向外采购的部件。

激光器、探测器和信号处理是激光雷达BOM总体成本最高的部分,占比高达70%,其中激光器+探测器占比30%-40%,是目前激光雷达降低成本(激光雷达赛道的主逻辑)的关键环节和核心技术壁垒之一。

当前,激光雷达技术方案业内已经基本达成共识,整体遵循机械式>半固态>全固态的演进路线,光线波段采用905nm,激光器由EEL向VECSEL发展,探测器由APD向SiPM和SPAD面阵发展。其中,SPAD(单光子雪崩二极管)被认为是SiPM迭代的下一代探测芯片 ,具有更高的集成度、跟高设计灵活性和更低的成本。

2020年,索尼推出了行业真正意义上的第一款车规级SPAD 芯片,如今几乎一统天下。

华为率先使用!苹果推动,索尼不看好却推出行业第一款车规级SPAD探测器芯片!

还记得2023年12月,华为发布的全球汽车业界首个量产的最高线数激光雷达——192线激光雷达吗?

据业界分析,这颗“遥遥领先”的激光雷达,使用的就是索尼的SPAD芯片——IMX459, IMX459作为业界真正意义上的第一款车载SPAD SoC(片上系统),具有里程碑意义。它的成功研发和应用,证明了SPAD技术在激光雷达领域的可行性。

作为CMOS图像传感器的老大,起初索尼是不太愿意做SPAD芯片的,索尼工程师提到他们认为在实际应用中很难实现。

然而,苹果公司决定在iPhone手机上配置短距激光雷达以实现3D扫描应用,苹果公司找到了索尼研发SPAD芯片,与此同时,汽车自动驾驶领域的激光雷达应用也在飞速发展,于是,索尼顺手一并研发车规级IMX459激光雷达芯片,并在2020年实现流片。

相关数据显示,如今索尼每年向苹果提供0.8-1亿颗SPAD面阵芯片,用于iPhone等产品中。

作为业界第一款车规级SPAD芯片,IMX459的性能其实并不理想,早在2022年国内外车企测试完后 ,大都给出负面评价,大部分厂商认为这是一颗Demo(样品),很难在量产中应用。

这时候,第一个吃螃蟹的厂商出现了:

H公司率先实现了量产,成本、可靠性、供应链稳定性等因素逐一克服。 即使IMX459在某些方面表现不佳,但它能在其他方面提供优势,例如成本更低以及供应链稳定,在市场中获得一定的份额。感谢H公司跑通了验证以及供应链体系,随后大量的车企和主机厂也给出了DEMO以及量产排班 ,并且实现了价格的cost down,让激光雷达真正意义上飞入寻常百姓家。

就这样,我们在2023年底看到了首个量产上车的192线激光雷达。

从华为激光雷达开始,进入2024年,市场大量出现192线激光雷达产品,而这些激光雷达用到的核心SPAB探测器芯片,都是索尼IMX459。

那么,为什么用索尼IMX459芯片做出来的激光雷达,都是192线?

索尼SPAD芯片独步天下,下一代已在路上,国产厂商摩拳擦掌自研SPAD芯片但一个能打的都没有

索尼是全球CMOS技术领先者,手握三个CMOS半导体制造厂,而IMX459激光雷达探测器芯片也有赖于其多年的技术积累。

IMX459芯片使用堆叠式工艺 ,顶部芯片使用90nm的背照式工艺实现,完成基于CMOS的SPAD。底部芯片使用40nm 1AI-10cu工艺,负责完成SPAD的信号逻辑处理。整个pixel数量为100000个SPAD像素(189(H)x600(V)),包含没有使用的SPAD。

IMX459芯片的结构如下图:

可以看到,IMX459芯片是上面SPAD芯片+下面逻辑芯片的集成封装采用索尼的“Cu-Cu混合键合”封装技术 ,这也是索尼闻名于世的堆叠式工艺——熟悉CMOS图像传感器的童鞋肯定不陌生,正是这一创新让索尼稳居全球CMOS图像传感器王者宝座。

IMX459全分辨率600x189, 通过每 3x3 个单元输出一个像素,因此最终分辨率200x63,而去掉边缘的 8 个像素之后,激活区域分辨率为192x63,各家通过把芯片旋转90度,刚好可以将垂直分辨率对应192线 ,基本可以确定用的就是IMX459,水平方向通过增加激光器数量和多面转镜,进而实现水平分辨率的倍增。

前文我们提到,作为第一款车规级SPAD芯片,IMX459的性能参数并不理想,经过厂商和索尼的共同努力,魔改后达到量产要求。

既然索尼能够研发出来,那我们国产能不能自研呢?

在2023年,多家国产芯片企业宣称研发出车规级SPAD芯片,并且有部分已经流片量产。

但据业内资深人士透露,国产SPAD芯片实测效果没有一家达到要求“要么测远了精度达不到,要么精度够了但只有几十米,良率还待定。”

因此,目前能够量产的SPAD芯片方案,几乎只有索尼一家。

而且索尼下一代激光雷达SPAD芯片IMX479已经在路上,有信息指华为、禾赛等厂商已经在Demo测试和验证阶段。

IMX479的探测效率(PDE)将高达50% ,探测效率(PDE)是衡量激光雷达性能的重要指标之一,它表示激光雷达能够成功探测到并返回有效信号的比例。而在波长为905nm的光源下,IMX459的峰值PDE为22%。

IMX479对比IMX459在性能参数上或有翻倍的提升,从而让激光雷达能够提供更准确、更可靠的环境感知能力。

波长温度-PDE

高度集成化是趋势,激光雷达技术门槛降低?

索尼的SPAD芯片对激光雷达产业具有重要意义,其创新性的将激光接收模块和数据读出模块集成到一起,在高度集成化、降低成本、向固态化迈进的同时,也降低了激光雷达的设计、制造技术门槛。

前文我们提到,一台激光雷达主要由激光器、探测器、信息处理、扫描等四大部件构成,整个激光雷达是一条链条,这部分强了,那其他部件就可以相对“弱”一些, 譬如探测器足够灵敏、性能足够强,那么对激光器的性能要求就没那么高。

结语

作为全球最大的CMOS图像传感器厂商,索尼凭借深厚的CMOS工艺技术,进入激光雷达SPAD芯片领域,并有望如同CIS一样形成领先地位。

SPAD芯片或将是未来激光雷达的核心感知技术,壁垒极高,国产厂商虽然已经开始自研,仍有许多瓶颈需要突破。无论从激光雷达集成化趋势,还是供应链风险可控角度来看,激光雷达核心感知芯片的自研,仍然是国产厂商必走之路。

缺少核心的国产感知芯片,国产激光雷达的遥遥领先也只是徒有虚名

相关问答

激光芯片 几纳米?

激光芯片的尺寸通常在几纳米级别。随着纳米技术的发展,激光芯片的尺寸逐渐缩小,目前已经实现了纳米级别的激光芯片。这种小尺寸的激光芯片具有高集成度、低功...

发光管芯与 激光芯片 的差别

发光就是普通的发光体管芯,激光就是利用激光设备发光芯片。发光就是普通的发光体管芯,激光就是利用激光设备发光芯片。

激光芯片 原理?

是一个极小的芯片。中文名激光芯片外文名nanophotoniccoherentimager开发者...是Caltech开发的一个微型硅芯片,名为nanophotoniccoheren...

dfb 激光 芯片 我国的情况如何?

目前我国的dfb激光器芯片技术处于较为落后的状态,虽然在国际上已经取得了一些进展,但是与国外先进水平相比仍有差距。在技术研发和产业化方面,我国还需要加大...

打印机加粉,人家问我要不要 芯片 ,请问各位大神,墨粉里为什么...

有些机型加粉需要更换芯片。但是有些可以无视芯片。在网上搜索一下你的打印机硒鼓是不是需要更换芯片的。如果需要你可以发一个没多少钱。现在的原装...

光电 芯片 深度解析?

中国是全球最重要的光通信大国,在光纤光缆领域拥有举足轻重的地位。然而在光器件领域,特别是光通信芯片领域,中国还有很大的进步空间,特别是高端光电芯片。...

10g光 芯片 什么水平?

高水平,10GDFB激光器芯片在我们半导体行业里面已经是举足轻重的地步了,这个东西在造半导体中十分重要,光模块是这个产业链中最为核心的部分,光芯片又是光模...

广州 激光 设备 芯片 定制哪家专业?

广州激光设备芯片定制有多家专业的公司,其中名气较高的有深圳市华芯半导体股份有限公司、广东安鑫微电子有限公司等。这些公司都有多年的激光芯片定制经验,拥...

半导体 芯片激光 焊接机是干嘛的?

半导体芯片激光焊接机是一种高精度的焊接设备,主要用于半导体芯片的制造和组装过程中。它采用激光束对芯片进行微小区域的加热,使其材料融合在一起,从而完成芯...

现在还有多少黑白 激光 打印机硒鼓无 芯片 ?

佳能2900,3000罢,现在入门级激光打印机具代表性且还在生产的没几款,佳能这两款机器和HP1020系统内部结构一模一样,连硒鼓都能通用,加粉很容易,一个硒鼓用...

猜你喜欢