如何通过沙子来改变这个世界?详解芯片工作及制造原理
沙子在我们普通人的眼中可能只是一种廉价的建筑材料,然而,科学家们通过自己的智慧,将这些不起眼、廉价的沙子制成半导体材料,价值瞬间翻了几十万倍,形成了一个巨大的半导体产业,中国每年进口半导体芯片所花费的金额就达到了几万亿人民币,已经超过了石油的进口总额,集成电路与半导体材料已经成为了社会发展的“刚需”。那么人类是如何将沙子摇身一变成为价值媲美黄金的芯片呢?接下来我们将进入制造半导体的世界。
半导体芯片
从沙子到单晶硅再到晶圆
沙子的组成沙子是我们生活中非常常见的一种物质,它的主要组成成分是石英,也就是二氧化硅(SiO2),沙子中二氧化硅含量高,因此,对于半导体产业来说,沙子是再合适不过的原料了。制作半导体材料所需要的原料是单晶硅,因此,需要先将沙子中的氧去除,从而得到单质硅。
沙子
沙子中提取硅单质,得到多晶硅要将沙子中的二氧化硅变为单质硅,需要将沙子中的二氧化硅进行还原。一般是在电弧炉中,将石英含量较高的沙子和焦炭按适当的比例加入,在2000℃的高温中反应并生成硅单质。
电弧炉
二氧化硅还原
然而,通过上面反应之后得到的硅杂质含量很高,硅的纯度一般只有95%~99%,这种硅称为冶金级硅。只有极少数的高纯度冶金级硅(纯度≥98%)才能用于进一步提纯为高纯度的电子级多晶硅,而这些能达到要求的仅占冶金级硅的1%。
超大规模集成电路的硅材料,纯度需要达到10~11个9,也就是平均几百亿个原子中仅含有一个杂质原子,这个纯度是非常高的,因此,需要将上面得到的硅进一步提纯。
一般先将粗硅与氯化氢(HCl)气体在高温下反应,生成三氯化氢硅(SiHCl3),同时也会生成SiCl4、SiH2Cl2、SiH3Cl、AlCl3、FeCl3等物质,再利用这些物质沸点的不同在蒸馏塔中控制温度进行多次精馏分离。
得到的高纯SiHCl3再与H2通入还原炉中,利用高纯硅细棒作为发热体,加热到1100℃左右,SiHCl3会与H2在炉内反应,生成Si和HCl,新生成的硅会沉淀在硅棒上,使硅棒逐渐变粗,得到高纯度的硅单质。
粗硅进一步提纯工艺
从非晶硅到单晶硅棒制备芯片所需要的硅必须是要单晶硅,所谓的单晶,就是物质内部的原子排列整齐有序的,而上述得到的反应得到的单质硅内部结构并非有序结构,一般为非晶结构或多晶结构,非晶即为原子排列完全没有规则,杂乱无章,而多晶则为部分结构有序,而长程无序,微观的区域内为晶体结构,很多的晶体结构之间存在着晶界。因此需要进一步重新熔化结晶得到单晶硅。
单晶硅结构和非晶硅结构
目前制备单晶硅一般使用直拉法,将熔融的单质硅控制到熔点温度,在熔点温度下用一块小的单晶硅(晶籽)引出,液态的硅会在晶籽的表面一层一层逐渐生长,形成单晶结构。
熔融的硅原子不断地在晶棒下端有序生长
在生长的过程中,单晶硅棒需要不停的旋转,而下面的坩埚反方向旋转,单晶硅棒一边旋转一边缓慢提起。之所以要旋转是因为熔体内溶液温度存在温差会形成自然对流,并且晶体在提升的过程中也会引起对流,因此,旋转的过程可以使温度更为均匀,并且也利于杂质的均匀分布。
在实际操作的过程中,转动速率需要通过对热流以及熔体性质进行分析并准确的计算,这样拉出来的单晶棒才能生长均匀,结构完整。
从单晶硅棒到单晶硅片拉出来的单晶硅棒制成之后,需要进行切片,切割的过程一般使用钢线切割,钢线的长度一般为数百千米,并且切割速度达到600~800m/min,钢线的表面一般镀有碳化硅颗粒,这类物质硬度极大,切割速度也非常快。
线切割原理
切割之后一个硅锭就可以得到很多的单晶硅片,这就是我们常听的晶圆。由于切割过程中表面并不平整,因此,还需要进行清洗,抛光等过程。
芯片的制作过程极其复杂,上面这一系列过程只是处于上游的制作过程,芯片的制作可以说在这里才真正开始。
芯片实际上是由几十亿个晶体管组成,制作芯片,就是相当于要在晶圆上刻蚀出无数微小的晶体管,并将它们通过极其细小的电路连接起来。在了解芯片的工作原理以及制备工艺之前,我们先要了解什么是晶体管以及它有什么作用。
晶体管及芯片工作原理
常用的晶体管一般为二极管和三极管,晶体管中最重要的部分就是P-N结,P-N结有一个特殊的性质,那就是单向导电性。
P-N结P-N结就是将一块P型半导体于N型半导体相接触,那么,在它们相接触的地方就形成了一个P-N结。
P型半导体
P型半导体指掺入少量硼(B)原子的硅晶体,硅元素处于第四周期元素,原子核最外层具有四个电子,而硅在该电子层电子数为8个的时候会形成稳定结构,因此单晶体中一个硅原子会与四个硅原子形成四对共价键,下面就是单晶硅的电子结构。
而硼原子最外层只有三个电子,因此,硼原子在与硅原子形成共价键时,会形成7个电子的结构,相比硅单质少了一个电子,相当于空了一个位置,我们把这个空的位置称为“空穴”。
“空穴”可以在这个结构中随意流动,因此,这类半导体就具有了导电性。
N型半导体
N型半导体指掺入少量磷(P)原子的硅晶体,磷原子最外层有5个电子,因此在与四个硅原子形成共价键时,就会多出一个电子,这个电子也是可以自由移动的。
P型和N型半导体结合形成P-N结,由于N型半导体存在多余电子,电子浓度较大,而P型半导体中存在很多电子空位,于是N型半导体中的电子会自发流向P型半导体。由于扩散作用导致电荷不平衡,于是会形成内建电场。
当外加一个电压形成的电场与内建电场相反时,便可以抵消内电场,同时可以在负极注入更多的电子,这个时候便形成了通路。当加入一个反向电压时,外电场方向与内电场方向相同,电场加强,电子便无法通过,这就是P-N结单向导电的本质原因。
上面这个是一个P-N结形成的二极管,当多个N型半导体与P型半导体相结合时,就能够形成三极管,三极管相当于是一个继电器,利用小电流控制大电流。
我们以一个NPN三极管为例,进行分析
一个三极管会存在两个P-N结,方向相反,每种类型的半导体都会有一个引脚,当我们在集电极与发射极两端接上电压时,无论电压是哪个方向,总会有一个PN结所形成的内电场与外电源的电场相同,因此ec两端始终无法形成通路。那么如果在be端另外加上一个电压就不一样了。另外加上的这个电压可以抵消一个P-N结的作用,电子可以顺利的从下面的N极流入P极,由于中间的P极非常窄,流入的多余电子会被c处的电极所吸引,于是ec之间形成了通路。ec之间的电流会比be之间的电流大几百倍,这就形成了一个电流放大的作用。
三极管电路图
三极管电流的放大作用演示
mos管晶体管中还有一种mos管,它的作用和三极管非常类似,三极管是通过小电流来控制大电流,而mos管不是通过电流来控制,而是通过电压。
我们以上图左边的N沟道场效应管类型为例进行分析,当在栅极加入一个正电压时,两端源极与漏极(N区)中的电子会被吸引到中间的P区,由于栅极与P区之间存在一层氧化物薄膜,电子无法通过,于是电子会聚集在P区,但是无法流入栅极,这个时候在源极与漏极之间加入电压的话就会形成一个通路,于是会有电流流过。
这就是晶体管的工作原理
通过上面的介绍,我们知道了晶体管的原理,如果用一句简单的话来总结晶体管的话,那么这些晶体管的作用就相当于是一个开关,当中间电极提供电流或者电压时,两端则会形成通路,相当于用手按下了开关,而没有电流或者电压时,则电流无法通过,相当于断开了开关。了解了这个原理,那么,晶体管在CPU中是如何发挥作用的呢?
CPU中晶体管的作用CPU可以说是一个计算机的大脑,它通过快速的运算来为我们服务。在计算的过程,全靠这些晶体管。我们知道,计算机存储数据的原理是利用0和1来进行储存,计算机之所以使用二进制,是因为对于电子机器来说,一切事物无非只存在两种状态:有或者没有。这个有或者没有对应着电路的断路或者通路。前面讲过晶体管就相当于开关,将这些开关通过不同的组合就能够得到各种门电路,输入不同的数据0、1就对应着这些开关的断开、闭合,通过门电路,我们就知道输出端是否有电流,这个输出端是否有电流对应着输出0或者1,通过这些大量的开关进行各种组合,我们就可以得到一个超强计算能力的处理器,实上CPU计算的过程,就是这些开关不断闭合、断开的过程。而单个晶体管开关的速度可以达到每秒1000万次以上,因此晶体管数量越多,开关速度越快,CPU的运算速度就越快。
逻辑电路
当然这只是简要的描述了CPU的部分功能,CPU其实不仅仅有计算功能,同时还拥有其它的模块,这里就不详细介绍,我们知道其中的主要原理就可以了。
从晶圆到芯片
知道了CPU中晶体管的作用,那么我们就能明白芯片为什么要进行下面这些制作工艺了。CPU中的主要部件就是上面所提到的这些晶体管的组合(主要是mos管),以目前的工艺技术,在一块拇指大的单晶硅片上就能制成几十亿个晶体管,并且将所有的晶体管连接起来,组成集成电路,因此工艺非常复杂。
下面就是关于在晶圆上制作出晶体管的工艺流程。
光刻蚀光刻蚀的目的就是将设计好的电路“雕刻”在硅片上,晶圆在光刻蚀之前,会对晶圆进行热处理,使表面形成一层氧化层(SiO2),然后再涂上一层薄薄的光刻胶,光刻胶有一个特殊的性质,就是被紫外线照射之后,会从不溶于水变为可溶于水。首先工程师会将电路设计成一个模板,再利用紫外线照射照射模板,通过模板的紫外线光汇集在特定的位置,照射的区域就是电路的轨迹,再用水进行清洗,被照射部分的光刻胶就被清理掉了。
涂上光刻胶
光刻过程——紫外线照射
被照射部分光刻胶被清洗掉
光刻机
掺杂被清洗掉的光刻胶之后,下面的二氧化硅层便暴露出来了,接下来会用溶液对二氧化硅层进行腐蚀,使下面的硅层暴露出来,暴露出来的硅层将会进行掺杂,根据不同的晶体管类型,选择掺杂什么样的杂质,形成P型或者N型半导体。
掺杂方式:离子注入法
离子注入法是将n型或p型掺杂剂的离子束在静电场中加速,注入p型或n型半导体表面区域,在表面形成与基体型号相反的半导体,从而形成P-N结。这些离子在电场中加速后得到的能量可以达到几十万电子伏特。之后经过离子注入之后的晶圆再进行处理,将剩下的光刻胶打磨清除掉。
离子注入
而经过强电场注入的杂质原子在硅中的结构并不规则,因此需要将注入离子的晶圆在一定条件下进行热处理,使杂质原子移动至硅原子的晶格上,占据一个硅原子的位置,从而形成规则的P型结构或N型结构。
经过刻蚀之后的晶圆表面凹凸不平,反射的光线经过干涉之后呈现五彩斑斓的颜色
掺杂的操作需要进行很多次,每次掺杂都需要经过涂上光刻胶、光刻、清洗、腐蚀、离子注入、热处理这些过程。最后在晶圆表面利用气相沉积法沉积一层二氧化硅薄膜进行绝缘处理,之后再涂上光刻胶、光刻、清洗、腐蚀,在绝缘层表面进行得到一个开孔,用于引出电极导线。
绝缘层上腐蚀开孔
电镀铜,制作电路上面这些过程基本已经形成了晶体管结构,接下来就要将这些成型的晶体管利用线路连接起来,而连接的线路就是铜。利用硫酸铜溶液电解在直流电下进行电解,从而在表面沉积形成一层铜。
因为整个表面都会被铜所覆盖,因此需要再打磨去掉多余的铜,从而在晶体管的三个电极上引出铜接口。
接下来就需要利用铜线将所有的晶体管进行连接,构建完整的电路,而电路的构建并不是一层结构就能够满足的,需要在晶体上方一层一层连接,构建每一层的电路都需要进行涂胶、光刻、镀铜、打磨这些工序,而芯片中这些线路的连接层数多达几十层。
构建电路
在显微镜下将芯片电路放大
晶圆切片、装片、封装经过上面的步骤,每个单独的芯片就制作好了,一块晶圆中就有几百个芯片单元,接下来需要对每一小块芯片进行测试,并将晶圆进行切割,分离各个芯片,将合格的芯片进行装片,并加上外壳进行封装。
芯片检测
晶圆切割
芯片封装
经过上面这些过程,一个完整的芯片就诞生了。一个芯片从晶圆到封装,都需要经过上千道工艺,芯片的制造一定程度上反应了人类科技的最高水准,甚至有些人认为芯片就像是一个外来的产物,人类居然能够拥有如此高超的技术制造出这么复杂的东西。那些曾经让芯片从无到有的科学家,他们的智力以及想象力令人折服。
总结
上面对芯片进行了大幅度完整的介绍,如果简单总结一下上面所介绍的芯片制作工艺就是:
硅提纯、切割、制作晶圆→光刻、腐蚀、离子注入、构建电路→芯片测试、晶圆切割、装片封装→芯片诞生。一颗沙子经过这样一个流程,摇身一变,价值甚至超过了黄金。但不得不说,一块芯片的研发,不仅花费的是高昂的成本,更是无数科研人员心血。
现在的芯片无处不在,从手机到人工智能再到航空航天,每一项技术都离不开芯片的支撑,而制作芯片的光刻机更是掌握着芯片产业的命脉,芯片正在改变着这个世界,在未来,我国在芯片技术上也一定能够有所突破。
想了解更多有趣科学知识,欢迎关注。
(部分图片来源于网络,侵权删)
【行业知识】浅聊:什么是存储芯片?
众所周知,存储芯片是半导体产业里的一大分支,而且随着信息时代的到来,地位越来越重要。近十年来,存储器的市场规模步步攀升,现在已经占到了半导体总体的30%多。今天就来浅浅地聊一下存储器。
其实,“存储”虽然是个偏技术的名词,但也是一个非常浪漫的词,是人类保存文明所必不可少的过程。最古老的存储器可能是石器和甲骨,再然后是纸和笔,再到磁带、光盘和U盘等等。最后这三类,就是技术时代的三种存储介质:磁性存储器、光学存储器和存储芯片。
存储芯片,也被称为半导体存储器,是以半导体电路作为存储媒介的记忆设备,用于保存二进制数据。它在计算机系统中扮演着至关重要的角色,用于临时或永久地存储数据和指令。
最基本的分类:RAM和ROM
存储芯片通常分为两种主要类型:随机存取存储器(RAM)和只读存储器(ROM)。
最直观的理解,我们买手机的时候都要选择的“XXGB+XXXGB”中,前面的那个指的是RAM,后面的那个指的是ROM。
随机存取存储器 (RAM): RAM 全称为“Random Access Memory”,是易失性存储器,其特点是断电后会丢失数据。举例来说,当我们在使用 Word 或 Excel 时,如果没有保存文件,突然关机或断电后再重启,文件中的数据就会丢失。这是因为我们在没有点击保存时,数据存储在计算机内存中,只有在点击保存后,数据才会保存到硬盘中。RAM 的每一个位单元由一个电容和一个晶体管组成,电容在断电的情况下会漏电,因此数据会丢失。虽然 RAM 存在断电丢失数据的缺点,但由于其读写速度较快,被广泛应用于 PC 机的内存、智能手机和服务器,一般被用来存储用户当前正在运行的程序。 所以我们手机中后台运行的程序,其实利用的是RAM的存储空间。所以RAM越大,可以同时运行的东西也就越多。
比方说,现在的安卓手机如果只有8G内存,一般是不太够用的,同时运行几个程序,就会出现后台程序被清退的情况,再切回去要重新打开应用,非常恼火。
关于RAM,还有一个概念需要关注,也就是它的“标准”,我们常听到的LPDDR5,说的就是标准。LPDDR全称为“Low Power Double Data Rate SDRAM”, 它是美国 JEDEC 固态技术协会面向低功耗内存而制定的通信标准,以低功耗和小体积著称,专门用于移动式电子产品。
LPDDR的版本号越高,RAM的读写速度就越快。 LPDDR至今已经发展到了LPDDR5,目前市场上的旗舰机型用的几乎都是LPDDR5,中端机型大多数用的都是LPDDR4X或LPDDR5。
只读存储器 (ROM): ROM全称为“Read-Only Memory”,中文名是“只读存储器”,属于非易失性存储器。与RAM不同,存放在ROM当中的数据可以被永久存储,即使设备断电关闭,ROM中的内容也不会丢失。我们电脑中的硬盘所用的存储芯片就是一种 ROM。ROM 的存储原理是通过电子在隧穿效应下从隧穿层进入浮栅存储起来,阈值电压较高,对应逻辑为 0;在向栅极施加负向偏压时,浮栅中的电子退出隧穿层,阈值电压较小,对应逻辑为 1。即使电流消失,阻挡层与隧穿层也能保证浮栅中的电子不丢失,从而保证数据的完整性。相比 RAM,ROM 的优点在于断电不失数据,且成本较低,但写入速度较慢。
ROM同样也有相应的标准,也是由美国 JEDEC 固态技术协会制定的,目前最新的版本号为UFS 3.1。 从性能上来说,从高到低依次为UFS 3.1>UFS 3.0>UFS 2.1>UFS 2.0。
进一步分类:DRAM和NAND是主流
RAM中的主要产品包括DRAM和SRAM,一个是“动态”(Dynamic),一个是“静态”(Static)。所谓的“静态”,是指这种存储器只要保持通电,里面储存的数据就可以恒常保持。相对之下,DRAM里面所储存的数据就需要周期性地更新。 然而,当电力供应停止时,SRAM储存的数据还是会消失(被称为volatile memory)。
SRAM的集成度和功耗都不如DRAM,造价也比较高,所以SRAM主要用于高速缓存(Cache),主要是CPU和存储器临时交换数据的地方。 主要的运行存储还是靠DRAM。当前很火的HBM,实际上也是DRAM的衍生产品。
ROM(只读存储器)的特点是只能读出而不能写入信息,通常在电脑主板的ROM里面固化一个基本输入/输出系统,称为BIOS(基本输入输出系统)。其主要作用是完成对系统的加电自检、系统中各功能模块的初始化、系统的基本输入/输出的驱动程序及引导操作系统。
后来,又出现了可以快擦除的读写存储器,也就是闪存(Flash),关于闪存是否属于ROM,一向存在争议。闪存又分为NOR和NAND,两者在结构和性能表现上有所差别:
因为NOR读取快、写入慢、造价高,所以一般用来存储一些需要固定读取的程序,比如汽车的启动器;NAND正相反,所以适合作为大规模的数据存储器。
近二十年来,也不断涌现了一些新型的存储器,希望能结合DRAM速度快和NAND不断电的优势,比如之前美光与英特尔合作的3D-Xpoint、相变存储器等,但都没有达到大规模量产的要求。所以现在DRAM和NAND依然是存储芯片中的主流产品,在存储器市场中占比超过90%,DRAM略微多一点点,但在现在的信息社会中,普遍预测NAND将会超过DRAM。
CPU和存储器是如何合作的?
主流电子产品中,CPU和存储器可以说是最重要最核心的两大芯片,一个负责运算,一个负责存储,两者之间的联系也很紧密,会在电子产品运行的过程中,大量交换数据。
现代计算机或嵌入式系统中,一般有几种不同的存储器,这些存储器越靠近 CPU ,速度越快,容量越小,价格越贵。主要有以下几种:
寄存器(Register):寄存器与其说是存储器,其实更像是 CPU 本身的一部分,只能存放极其有限的信息,但是速度非常快,和CPU同步。
高速缓存(CPU Cache):使用静态随机存取存储器(Static Random-Access Memory,简称SRAM)的芯片。
内存(DRAM):使用动态随机存取存储器(Dynamic Random Access Memory,简称DRAM)的芯片,比起 SRAM 来说,它的密度更高,有更大的容量,而且它也比 SRAM 芯片便宜不少。
硬盘:目前主要分为固态硬盘(Solid-state drive,简称SSD)和机械硬盘(Hard Disk Drive,简称HDD)。SSD的核心就是DRAM和NAND,HHD则是磁性存储器,不属于半导体存储器了,虽然造价比SSD低,但已经逐渐被市场淘汰。
✦
•
✦
随着信息社会的发展,要通过电子设备存储的数据越来越多,质量越来越高,也会带动存储器需求的继续上涨。期待国内的存储厂商把握技术革新和迭代的机遇,缩小与国际的差距!
END
关注“锐芯闻”公众号,为你带来别处看不到的“芯”讯息
相关问答
芯片存储数据的原理是什么?
芯片储存信息的原理如下:对动态存储器进行写入操作时,行地址首先将RAS锁存于芯片中,然后列地址将CAS锁存于芯片中,WE有效,写入数据,则写入的数据被存储于指...
小米魔改存储芯片什么原理?
小米魔改存储芯片的原理是通过对存储芯片的硬件和软件进行优化和改进,以提升存储性能和效率。具体来说,小米魔改存储芯片采用了先进的闪存控制器和算法,通过优...
hbm存储芯片制造原理?
HBM(HighBandwidthMemory)是一种高带宽内存技术,它的制造原理如下:1.堆叠技术:HBM通过将多个DRAM芯片垂直堆叠在一起来实现高密度集成。每个DRAM芯片都通...
内存卡的存储原理?
内存卡存储原理可以分为两个方面:物理存储和逻辑存储。物理存储:内存卡通常由一个或多个存储芯片组成。每个存储芯片内部包含了许多存储单元,每个存储单元可...
u盘的存储原理是什么?
内存卡和U盘是芯片储存,内部没有机械装置。区别从内容和本质上差距比较大一、存储的原理不同U盘是以半导体材料(芯片)作为存储单元,又叫固体存储器,本质上...
U盘的存储原理是什么?
U盘的存储原理是:计算机把二进制数字信号转为复合二进制数字信号(加入分配、核对、堆栈等指令)读写到USB芯片适配接口,通过芯片处理信号分配给EPROM2存储芯片...
内存条存储数据的原理?
内存条是电脑中的重要组件,它具有存储数据的功能,原理是主要包括一条电路板,装有若干个小芯片,每个小芯片存储一定容量的数据。这些芯片与主板相连,主板将...
简述ic卡芯片内部结构,工作原理及应用?
非接触式IC卡又称射频卡,由IC芯片、感应天线组成,封装在一个标准的PVC卡片内,芯片及天线无任何外露部分。是世界上最近几年发展起来的一项新技术,它成功的将...
U盘存储数据的原理?
原理是基于闪存技术。它是通过在一个非挥发性的NAND型闪存芯片中来进行数据存储的。闪存芯片被划分为许多块或扇区,每个扇区中包含了许多页(Page)。每页通常...
u盘存储原理是什么?
原理是:计算机把二进制数字信号转为复合二进制数字信号(加入分配、核对、堆栈等指令)读写到USB芯片适配接口,通过芯片处理信号分配给EPROM2...EPROM2数据存...